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Soliton generation in optical fibers for a dual-frequency input
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We analyze scenarios of soliton generation in an ideal fiber for an input that consists of either two in-phase
or out-of-phase solitonlike optical pulses at different frequencies. In both cases the relationship between the
structure of the emerging solitons and the frequency separation of the initial solitons is studied both analyti-
cally and numerically. Depending on the value of the frequency detuning, if the two initial solitons are in phase
~symmetric input!, two bound solitons with equal amplitudes~breather!, a single soliton, or a pair of solitons,
which have equal amplitudes and exhibit opposite velocities, can be generated. When the two initial solitons
are out-of-phase~antisymmetric input!, only the last scenario takes place. Also, we calculated the threshold
values of the frequency separation at which the structure of the emerging solitons changes. Moreover, we
demonstrated that two of these critical frequencies correspond to cusplike maxima of the energy density of the
radiative modes. Finally, we show that these analytical results are entirely verified by numerical simulations.
@S1063-651X~99!01910-8#

PACS number~s!: 42.65.Tg, 42.81.Dp, 02.30.Jr
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I. INTRODUCTION

The idea of using optical solitons as carriers of inform
tion in high-speed communication systems was first p
posed in the seminal papers of Hasegawa and Tappert@1#.
By taking into account the intrinsic Kerr nonlinearity o
silica, they showed that the propagation of optical pulses
both the anomalous dispersion regime~negative group veloc-
ity! and the normal dispersion regime~positive group veloc-
ity! is governed by similar types of nonlinear Schro¨dinger
equations~NLSE!. As it is well known, both of these equa
tions are completely integrable and their solutions can
found by the inverse scattering transform~IST! @2#. One of
the most important characteristics of an equation solvable
the IST is that it possesses solutions which propagate with
any distortion of their shape, the so-called soliton solutio
In the case of the NLSE, the mechanism by which th
solitons are formed is well understood: they can be view
as the outcome of the balanced interplay between the gr
velocity dispersion and the nonlinearly induced self-ph
modulation. More exactly, the robustness of the soliton
lutions stems from the fact that their wave numbers are se
rated from those of linear dispersive waves so that there i
resonant exchange of energy between the nonlinear and
ear modes.

In the early 1980s, as the fiber optics technology
vanced, the experimental verification of the propagation
optical solitons was possible. Thus, in a series of eleg
experiments, it was demonstrated that in the region
PRE 601063-651X/99/60~4!/4868~9!/$15.00
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anomalous dispersion it is possible to propagatebright soli-
tons @3# while in the region of normal dispersiondark soli-
tons can be excited@4#.

As it is well known, the equation governing the nonline
pulse evolution in an ideal optical fiber in the anomalo
dispersion regime is the following NLSE:

i
]c

]t
1

]2c

]x2
12ucu2c50. ~1!

Here we adopt the notations in the mathematical literatu
that is, the variablet plays the role of the evolution variable
However, we stress that the physical meaning of the varia
t is the normalized distance along the fiber,x represents the
normalized time, andc is the normalized complex amplitud
of the pulse envelope. The normalized units aret
5ub2uZ/2T0

2 andx5(T2Z/vg)/T0, whereb2 is the group-
velocity dispersion coefficient,T0 is the pulse width
(TFWHM51.763T0), vg is the group velocity, andZ andT are
the physical distance and time, respectively~FWHM denotes
full width at half maximum!.

In spite of the fact that a single optical soliton can prop
gate over very long distances without experiencing any
formation of its shape, in order to be used as bits of inf
mation in reliable high-speed communication systems
has to create stable propagating trains of well separated
tons. Therefore, it is important to understand the interact
between adjacent solitons belonging to such a train. T
interaction has mainly two components. The first one is
4868 © 1999 The American Physical Society
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termined by the nonlinear interaction among solitons wh
all other perturbations are neglected. To be more specific
stress that the linear superposition ofN solitons does not lead
to anN-soliton state whose parameters are described sim
by a linear combination of the parameters of the initial so
tons. Instead, there is a very intricate~nonlinear! relationship
between the parameters which describe the emer
N-soliton state and the parameters of theN initial solitons.
The effects of the nonlinear interaction between copropa
ing solitons in the absence of any perturbative factors h
been thoroughly investigated both analytically@5–9# and nu-
merically @5,10#. The second component of the nonlinear
teraction among solitons in a soliton train is given by t
influence of various perturbative factors on the parameter
the propagating solitons. In order to describe this interact
usually one assumes that the parameters of the soli
slowly change upon the action of perturbations and so on
able to determine their dependence on the propagation
tance along the optical fiber. This was performed in@11–19#
for N52 solitons and in@9,10,20# for N>3 solitons.

In order to increase the transmission capacity~bit rate! of
soliton-based communication systems, channels at diffe
wavelengths can be used. However, solitons in differ
channels interact because of the cross-phase modulation
this can have a deleterious influence on the bit rate of
transmission line. Therefore, one needs to understand
interaction between overlapped solitons of different frequ
cies. This problem has been addressed only in its limit ca
when the frequency detuning is much smaller@19# or much
larger@7,8,21–24# than the spectral width of the solitons. I
the first case the interacting solitons propagate in the s
channel while in the later case they propagate in differ
channels.

In this paper we analyze the nonlinear interaction betw
two superimposed solitons with different frequencies wh
the frequency detuning is comparable with the soliton f
quency width. We discuss the structure of the emerging s
tons without taking into account any interaction with exte
nal perturbative factors. The paper is organized as follows
Sec. II we give a brief summary of the IST and soliton s
lutions of Eq.~1!. Then, in Sec. III we present the structu
of the emerging solitons from a linear superposition of t
in-phase solitons with different frequencies~symmetric in-
put!. In Sec. IV, by a similar analysis to that in Sec. III, w
present the structure of the optical field in the case in wh
the two solitons are out-of-phase~antisymmetric input!. Fur-
thermore, the critical values of the detuning frequencies
which the structure of the emerging solitons changes are
culated in Sec. V. Moreover, the results established in
section are used to describe the structure of the emer
optical field which corresponds to the case in which there
an arbitrary phase difference between the two overlapp
solitons. Finally, in the final section, the results are summ
rized and discussed.

II. INVERSE SCATTERING TRANSFORM

In this section we briefly review the IST method, focusi
on its application to the NLSE. This method consists mai
in the following three steps. First, by using the initial cond
tion c(x,0), a spectral problem associated with the NLSE
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solved and so the initial scattering data are determined~di-
rect scattering analysis!. These data contain the spectrum o
linear differential operator: the discrete part of the spectr
determines the properties of the soliton component of
solution while the continuous part describes the radiat
field. In the second step, by using the time evolution of
scattering data, their values at an arbitrary timet are ob-
tained. This step is rather trivial as the discrete part of
spectrum does not change in time while the continuous
satisfies a simple linear differential equation. Finally, in t
last step, the solutionc(x,t) is reconstructed from the sca
tering data at the timet ~the inverse scattering transform!. In
what follows, we will describe the steps outlined above.
begin with, let us consider the following two systems
equations:

]F

]x
5UF, ~2!

]F

]t
5VF, ~3!

where U and V are 232 matrices given by the following
formulas:

U5S l

2i
i c̄

ic 2
l

2i
D , ~4!

V5S 2
l2

2i
2 i ucu2

2 ilc̄1
]c̄

]x

2 ilc2
]c

]x

l2

2i
1 i ucu2 D . ~5!

F is a vector-valued function,l is a spectral parameter, an
the overbar signifies complex conjugation. In the above f
mulas, as well as in the subsequent presentation, we us
notations in@25#. With this choice of the matricesU andV, it
is easy to verify that the compatibility condition for the sy
tems~2! and~3!, the so-calledzero curvature representation,

]U

]t
2

]V

]x
1@U,V#50, ~6!

is equivalent to the NLSE~1!. Next, for real valuesl we
introduce the Jost functionsT6(x;l) associated with the ei
genvalue problem~2!. These are 232 matrices whose col-
umns are the two linearly independent solutions of Eq.~2!.
They have the following asymptotic behavior:

T6~x;l!→E~x;l!,x→6`, ~7!

where E(x;l)[exp„(lx/2i )s3…, with s i ( i 51,2,3) the
standard 232 Pauli matrices. Because the columns of t
matrix T2(x;l) are linearly dependent on the columns of t
matrix T1(x;l), one can write

T2~x;l!5T1~x;l!T~l!, ~8!
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whereT(l) is the scattering matrix. It is easy to see that t
matrix U(x;l) has the symmetry propertyŪ(x;l)
5s2U(x,l̄)s2 and, obviously, for reall this symmetry re-
lation extends to the scattering matrix:T̄(l)5s2T(l)s2.
This leads to the general expression for the matrixT(l):

T~l!5S a~l! 2b̄~l!

b~l! ā~l! D , ~9!

where a(l) and b(l) are the scattering~Jost! coefficients
and are given by

a~l!5det„T2
(1)~x;l!,T1

(2)~x;l!…, ~10!

b~l!5det„T1
(1)~x;l!,T2

(1)~x;l!…. ~11!

Here, the first and the second columns of the Jost funct
were denoted byT6

(1)(x;l) andT6
(2)(x;l), respectively. One

can prove that, if the initial conditionc(x,0) decreases as
ymptotically to zero whenuxu→` faster than any power ofx,
thenT2

(1)(x;l), T1
(2)(x;l), and, consequently, the scatterin

coefficient a(l) can be analytically extended in the upp
half of thel-complex plane whileT2

(2)(x;l) andT1
(1)(x;l)

can be analytically extended in the lower half of t
l-complex plane.

The soliton solutions of Eq.~1! are determined by the se
of zeros of a(l): Z5$l iPCua(l i)50, Im(l i).0, i
51, . . . ,n%. As Eq. ~10! shows, ifl5l i is a zero ofa(l),
the column T2

(1)(x;l i) is proportional to the column
T1

(2)(x;l i) so that, if one denotes byg i the proportionality
coefficient, one can write

T2
(1)~x;l i !5g iT1

(2)~x;l i !. ~12!

The zeros ofa(l), together with the complex coefficient
g i , i 51, . . . ,n, completely define the soliton part of th
solution of Eq.~1! while the Jost coefficientsa(l) andb(l)
with l on the real axis describe the radiative part.

The general solution of Eq.~1! can be obtained by solving
the Gelfand-Levitan-Marchenko~GLM! equation

G1~x,y!1V~x1y!1E
x

`

G1~x,s!V~s1y!ds50,

~13!

where the kernelG1(x,y) is a 232 matrix defined by the
following integral representation of the Jost functio
T1(x;l):

T1~x;l!5E~x;l!1E
x

`

G1~x,y!E~y;l!dy ~14!

and the 232 matrix V(x) is determined by the spectrum o
the linear differential operator appearing in Eq.~2!:

V~x!5v~x!s22v̄~x!s1 ~15!

with
e

ns

v~x!5
1

4pE2`

` b~l!

a~l!
eilx/2dl1

1

2i (
j 51

n

cje
il j x/2. ~16!

Here, cj5g j /ȧ(l j ) and the dot represents the derivati
with respect tol. Once the kernelG1(x,y) is determined
from the GLM equations, the general solution of Eq.~1! can
be found from the following relation:

s3U0~x!5@G1~x,x!,s3#, ~17!

whereU0(x)5 i (c̄s11cs2). So, once the scattering da
a(l),b(l),l i ,g i , i 51, . . . ,n are known, by using Eqs
~13! and ~17! one can find the general solution of Eq.~1!.
However, we mention that the solution of the GLM equati
~13! can be found in a closed form only if the scatterin
coefficientb(l)50 for l on the real axis.

Similar to the matricesU(x;l) and T(l), the kernel
G1(x,y) has the symmetry property Ḡ1(x,y)
5s2G1(x,y)s2. Therefore, it can be written as

G15S G1
11

2Ḡ1
12

G1
12

Ḡ1
11 D . ~18!

Next we discuss the time evolution of the scattering da
This dynamics can be obtained from Eq.~3! and the fact that
the functionc(x,0)→0 for uxu→`. Without any proof, we
present here only the results. Thus, one can show that
spectral parameterl and the scattering coefficienta(l) do
not change upon propagation while the scattering coeffic
b(l) and the complex coefficientsg i , i 51, . . . ,n have the
following time dependence:

b~l,t !5b~l,0!e2 il2t, ~19!

g j~ t !5g j~0!e2 il j
2t. ~20!

To conclude this section, we introduce the integrals
motion of the NLSE. As it is known, this equation has
infinite number of integrals of motion which are in involu
tion with respect to a certain Poisson structure. From a ph
cal point of view, the most useful are the number of parti
N, the momentumP, and the HamiltonianH. They are given
by the following expressions:

N5E
2`

`

ucu2dx52(
i 51

n

h i2
1

pE2`

`

lnua~l!udl, ~21!

P5
1

2i E2`

` S ]c

]x
c̄2

]c̄

]x
c D dx

52(
i 51

n

h ij i2
1

pE2`

`

l lnua~l!udl, ~22!

H5E
2`

` S U]c

]xU
2

2ucu4Ddx

52(
i 51

n S h ij i
22

1

3
h i

3D2
1

pE2`

`

l2lnua~l!udl, ~23!
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whereh i5Im l i andj i5Rel i .

III. SOLITON GENERATION FROM SYMMETRIC INPUT
PULSES

In this section we analyze the structure of the optical fi
generated from a linear symmetric superposition of two f
damental solitons with different frequencies. Such an ini
condition of Eq.~1! can be written as

c~x,0!5sech~x!eivx1sech~x!e2 ivx, ~24!

where 2v is the frequency detuning between the two so
tons. The symmetry implied by the initial condition~24!, that
is, c(x,0)5c(2x,0), extends to the matrixU(x;l), so that
it has the additional involution property

U~x;l!52s1Ū~2x;2l̄ !s1 . ~25!

By taking into account the structure of the linear eige
value problem~2!, it is easy to see that the symmetry~25!
implies that if F(x;l) is an eigenfunction of Eq.~2! corre-
sponding to the eigenvaluel, thens1F̄(2x;l) is an eigen-
function corresponding to the eigenvalue2l̄. Therefore, the
discrete eigenvalues of the linear problem~2! are located
symmetrically with respect to the imaginary axis. Furth
more, by taking into account the asymptotic behavior~7! of
the Jost functions, one obtains that the eigenfunctions of
~2! corresponding to the eigenvaluesl and 2l̄ are related
by the following relationship:

T2
(1)~x;l!5s1T̄1

(2)~2x;2l̄ !, ~26!

T2
(2)~x;2l!5s1T̄1

(1)~2x;l̄ !. ~27!

Here it was supposed that Iml.0, that is, it belongs to the
domain of analyticity ofT2

(1) andT1
(2) . The above equations

together with Eqs.~10! and ~11!, lead to the conclusion tha
the scattering coefficients must have the following symme
property:

a~l!5ā~2l̄ ! ~28!
li-
e
ial

in
-
a

d
-
l

-

-

-

q.

y

for Im l>0, and

b~l!52b̄~2l! ~29!

for real l. This implies that the zeros of the scattering co
ficient a(l) are located either on the imaginary axis or th
appear in pairs at (l,2l̄). Here we mention that a simila
situation was encountered in the case of a perturbed NL
@26,27#. However, in that case the zeros of the scatter
coefficients appear in pairs for any arbitrary initial conditio
and not only for those with a specific symmetry. Moreover
was proven in@28# that the structure of a soliton solution o
that perturbed NLSE which corresponds to a pair of zero
preserved even if the solitons propagate under the action
general perturbation. In the present case this is no lon
true: only perturbations which have the same symmetry
the initial condition~24! will preserve the structure of the
zeros of the scattering coefficienta(l).

Now let us describe the case in which the only zeros
the coefficienta(l) are located at (l0 ,2l̄0) with l05j
1 ih, j, h.0, andb(l)50 for any reall. If we denote by
(g1 ,g2) the proportionality coefficients defined by Eq
~12!, one can see that Eq.~26! implies that

ḡ1g251. ~30!

Moreover, if we take into account the time dependence~20!
of these coefficients, we see that this relation is satisfie
any time t, that is, the soliton solution preserves its initi
symmetry. Furthermore, one can see from Eqs.~13! and~16!
that if we choose the initial values ofg ’s such that

g1~0!5g2~0!5 i , ~31!

then the initial conditionc(x,0) corresponding to these sca
tering data is real. This proves that, contrary to one of
results in @5#, real symmetric pulses can generate pairs
solitons with nonzero velocity.

By solving the GLM equation~13! which corresponds to
a pair of zeros located symmetrically with respect to t
imaginary axis and with coefficientsg1 ,g2 which satisfy
Eq. ~31!, one obtains the following two-soliton solution:
c~x,t !5jhef(t)
ei jxcosh@h~x12jt !1 iw#1e2 i jxcosh@h~x22jt !2 iw#

j2coshh~x12jt !coshh~x22jt !1h2sinj~x12iht !sinj~x22iht !
, ~32!
ne
al

ion
t

where the overall phasef(t)52 i (j22h2)t1a, a5 lnul0u,
and tanw5h/j. This function corresponds to a pair of so
tons with equal amplitudesh and with equal and opposit
velocities j. As mentioned before, it preserves the init
symmetry during the propagation, that is,c(x,t)5c(2x,t),
and is real att50.

In order to verify these results, we considered as the
tial condition for the NLSE~1! the real, symmetric superpo
sition ~24! of two fundamental solitons. Thus, by using
numerical algorithm based on the IST@29#, we determined
the spectrum of the linear eigenvalue problem~2! which cor-
i-

responds to the initial condition~24!. In order to do this, we
discretized the interval (2L,L) into 2M11 subintervals of
equal sizes. Within each such subinterval the functionc(x,0)
was taken to be constant, while foruxu>L we chose
c(x,0)50. Then, in order to advance the eigenfunctions o
step, we solved Eq.~2! by using a standard exponenti
propagator method. Thus, by knowing a solution of Eq.~2! at
x52L, by successive iterations one can find it atx5L.
Furthermore, by choosing as the initial value of the solut
at x52L the one given by Eq.~7!, one can relate the Jos
functions atx52L andx5L. This information allows us to
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determine the scattering matrix and, implicitly, the scatter
coefficientsa(l) andb(l). In order to compute the zeros o
the scattering coefficienta(l), we used a standard Newton
Raphson method. The numerical values of the parameteL
andM were increased gradually until the computed values
the scattering data converged to an asymptotic value. T
by using these scattering data, we calculated the energy
ried by the emerging solitons as well as the amount of ene
carried by the radiative modes. In Fig. 1~a!, the spectrum of
the linear eigenvalue problem~2! for the symmetric initial
condition~24! is presented. As one can see, as the freque
detuningv varies, three different kinds of solitons can b
generated. First, forv,v1

s.0.505 the coefficienta(l) has
two distinct zeros located on the imaginary axis, so tha
bound state consisting of two solitons with zero velocit
~breather! emerges. Furthermore, forv1

s,v,v2
s.1.313 the

coefficienta(l) has only one zero located on the imagina
axis so that for frequenciesv in this domain only a single

FIG. 1. The discrete spectrum determined by the symmetric
put ~24! and the energies in the optical field at the output.~a! The
amplitudeh ~dotted line! and the velocityj ~continuous line! of the
generated solitons as a function of the frequency detuningv; ~b! the
energiesEin ~dashed line! andErad ~continuous line! versusv.
g

f
n,
ar-
y

cy

a
s

soliton with zero velocity can be generated. If the frequen
v is further increased,v2

s,v,v3
s.1.509, again the coeffi-

cienta(l) has two zeros on the imaginary axis so that ag
a breather emerges. Finally, ifv3

s,v, the coefficienta(l)
has two zeros situated symmetrically with respect to
imaginary axis so that the emerging solution is the tw
soliton solution~32!. As a final remark related to the discre
spectrum in the symmetric case, we mention that, as Fig.~a!
illustrates, for frequenciesv@1 the velocity of the emerging
solitons isj.v. This result can be understood by noting th
for large values ofv, the nonlinear interaction between th
two superimposed solitons is very weak so that we exp
that the amplitude and velocity of the initial solitons are on
slightly perturbed by their interaction. More exactly, ifv
@1, the frequency shiftuj2vu is inversely proportional to
the square of the soliton width and the frequency detuningv
@7,8,21#.

Furthermore, by using the expression of the input pu
and the scattering data, we calculated the total energyEin of
the initial pulse, the energy of the emerging solitonsEsol,
and the energy in the radiative modesErad. Obviously, they
must satisfy the relationEin5Esol1Erad. These energies ar
defined by the following relations:

Ein5E
2`

`

uc~x,0!u2dx, ~33!

Esol52(
i 51

n

h i , ~34!

Erad52
1

pE2`

`

lnua~l!udl, ~35!

and do not change upon propagation. As was pointed ou
Sec. II, in the IST theory the above quantities have the me
ing of the number of particles, but here we use their phys
interpretation, that is, the energy of the optical field. T
dependence onv of the total energyEin and the energy in
the radiative modesErad is presented in Fig. 1~b!. One im-
portant fact that this figure illustrates is that the energy of
radiative modesErad(v) has two peaks at the threshold fr
quenciesv1

s ,v2
s . Consequently, the generated solitons w

be influenced by the radiative field especially when the f
quency detuningv is close to these two threshold value
The origin of these two peaks can be understood if we t
into account the spectrum shown in Fig. 1~a!. Thus, forv
5v1,2

s the scattering coefficienta(l) has one zero on the
real axis, that is,a(0)50. Therefore, the integrand in Eq
~35! has a logarithmic singularity at these two critical valu
of the frequency detuningv.

As a further check of the results presented above,
determined numerically the solution of the NLSE~1! corre-
sponding to the initial condition~24!, and the results for
some specific values of the frequency detuningv are pre-
sented in Figs. 2~a!–2~d!. As one can see, atv50.1 andv
51.4 a breather emerges, atv51.0 one obtains only one
soliton with zero velocity, while forv51.525 the emerging
solution represents a two-soliton solution with equal amp
tudes and opposite velocities.

-
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FIG. 2. The amplitudeuc(x,t)u versus the normalized distancet and normalized timex for symmetric initial conditions~24!. ~a! v
50.1; ~b! v51.0; ~c! v51.4; ~d! v51.525.
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IV. SOLITON GENERATION FROM ANTISYMMETRIC
INPUT PULSES

By a similar analysis with the one in the preceding s
tion, in what follows we describe the structure of the optic
field generated by an antisymmetric superposition of t
fundamental solitons with different frequencies

c~x,0!5 i @sech~x!eivx2sech~x!e2 ivx#. ~36!

Here, the imaginary unit was introduced only to ensure t
the initial conditionc(x,0) is a real function. As before, th
symmetry propertyc(x,0)52c(2x,0) extends to the ma
trix U(x;l):

U~x;l!52s2Ū~2x;2l̄ !s2 . ~37!

This involution property implies that ifF(x;l) is an eigen-
function of Eq.~2! corresponding to the eigenvaluel, then
s2F̄(2x;l) is an eigenfunction corresponding to the eige
value2l̄. Therefore, again the eigenvalues of the system~2!
appear in pairs located symmetrically with respect to
imaginary axis. The asymptotic dependence~7! implies that,
for Im l.0, the Jost functions must satisfy

T2
(1)~x;l!5 is2T̄1

(2)~2x;2l̄ !, ~38!
-
l
o

t

-

e

T2
(2)~x;2l!52 is2T̄1

(1)~2x;l̄ !. ~39!

These involution properties show that Eqs.~28! and ~29!
describe this case too, so that the zeros of the scatte
coefficienta(l) are located either on the imaginary axis
they appear in pairs at (l,2l̄).

In what follows, we describe the case in whicha(l) has
only a pair of zeros at (l0 ,2l̄0) with l05j1 ih, j, h
.0, andb(l)50 for any reall. One can see that in thi
case Eq.~38! implies that

ḡ1g2521. ~40!

As before, this relation is satisfied at any timet, that is, the
soliton solution preserves its symmetry upon propagati
Furthermore, if we choose the initial values ofg ’s such that

g1~0!52g2~0!51, ~41!

then the initial conditions corresponding to these scatter
data are real.

By solving the GLM equation~13! which corresponds to
these scattering data, one obtains the following two-soli
solution:
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c~x,t !52 i jhef(t)
ei jxcosh@h~x12jt !1 iw#2e2 i jxcosh@h~x22jt !2 iw#

j2coshh~x12jt !coshh~x22jt !1h2cosj~x12iht !cosj~x22iht !
. ~42!
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two
ci-

n

of

pu
Such solitons can be excited if one considers as the in
condition of the NLSE~1! pulses with appropriate symmetry
In order to illustrate this fact, we determined the spectrum
the eigenvalue problem~2! which corresponds to the choic
~36!. The structure of this spectrum, as well as the dep
dence of the energiesEin andErad on the frequency detuning
v, is presented in Figs. 3~a!–3~b!. As Fig. 3~a! illustrates, for
frequency detuningv,v1

a.0.369 no soliton is generated
while for v.v1

a the emerging solution represents the sup
position of two solitons that exhibit equal amplitudes a
opposite velocities, that is, a two-soliton solution describ
by Eq. ~42!. Furthermore, one can observe that, unlike
symmetric case, for antisymmetric input pulses withv.v1

a

the emerging soliton has a finite velocity. This fact can
understood as follows: if both the velocityj and the ampli-

FIG. 3. The same as in Fig. 1, but for the antisymmetric in
~36!.
al

f

-

-

d
e

e

tudeh would vanish, then the coefficienta(l) would have a
zero in the origin. However, as we will show in the ne
section, this would require the area of the input pulse to
an odd multiple ofp/2, a condition which cannot be satisfie
by an antisymmetric function. Finally, similar to the sym
metric case, the energy in the radiative modesErad has a
maximum atv5v1

a .
These results are also verified by the numerical simula

of the propagation of an input pulse~36! for various frequen-
cies v. Thus, as Figs. 4~a!–4~b! illustrate, for frequencyv
50.25,v1

a no soliton is generated, while forv50.75.v1
a

the emerging solution represents the superposition of
solitons that exhibit equal amplitudes and opposite velo
ties.

V. THE NUMBER OF GENERATED SOLITONS

In what follows we will discuss the relationship betwee
the structure of the spectra of the eigenvalue problem~2! and
the initial area of the optical pulse. A similar discussion

t
FIG. 4. The amplitudeuc(x,t)u versus the normalized distancet

and normalized timex for antisymmetric initial conditions~36!. ~a!
v50.25; ~b! v50.75.
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some of the results presented here can be found in@30–32#.
To begin with, let us consider the system~2! for the particu-
lar valuel50 and for real functionsc(x,0):

]F1

]x
5 icF2 , ~43!

]F2

]x
5 icF1 . ~44!

It is easy to see that the general solution of the system~43!
and ~44! can be written as

S F1

F2D 5S e2 iS(x)S C1E
2`

x

c~x8,0!e2iS(x8)dx81C2D
2 iC1eiS(x)2F1

D ,

~45!

whereC1 ,C2 are arbitrary constants and

S~x!5E
2`

x

c~x8,0!dx8. ~46!

Therefore, by taking into account the asymptotic conditio
~7!, one can see that the Jost functionT2

(1)(x;0) is deter-
mined by the choiceC15 i , C251. Furthermore, knowing
the expression of the Jost functionT2

(1)(x;0) and the
asymptotic dependenceT1

(2)(x;0)→(1
0), x→`, one can de-

termine from Eq.~10! the scattering coefficienta(0),

a~0!5e2 iS0S i E
2`

`

c~x8,0!e2iS(x8)dx811D , ~47!

where S05S(`) is the initial area of the pulse. A simpl
integration by parts in Eq.~47! leads to the final expressio
for a(0):

a~0!5cosS0 . ~48!

This formula has been used to predict the number of solit
which are generated from an optical pulse with a cert
initial area. Thus, assuming that only solitons with zero
locities are generated and that, up to a constant phase
initial conditionc(x,0) is real, it was argued that the numb
N of solitons is given by@31,32#

N5F1

2
1

S0

p G , ~49!

where @ # is the largest integer smaller than the argume
However, a more rigorous restatement of Eq.~49! is that in
order to generate a soliton with zero amplitude and veloc
that is,a(0)50, the areaS0 of the initial pulse must satisfy

S05~2n21!
p

2
, ~50!

wheren is an arbitrary integer. When applied to the symm
ric case, Eq.~50! has the following solutions:ṽ150.506 for
n52 andṽ251.313 forn51. We see that these values a
s

s
n
-
the

t.

,

-

in excellent agreement with the threshold frequenciesv1,2
s .

The fact that Eq.~49! can lead to wrong results is illustrate
by the discrete spectrum shown in Fig. 1~a!. Thus, for v2

s

,v,v3
s , Eq.~49! predicts that no soliton with zero velocit

can be generated, a conclusion which is obviously wrong
To conclude this section, we will illustrate how Eq.~50!

can be used to describe the structure of the eigenvalue s
trum associated with the following initial condition:

c~x,0!5sech~x!ei [vx1(u/2)]1sech~x!e2 i [vx1(u/2)].
~51!

This expression represents the superposition of two fun
mental solitons with different frequencies and phases. T
phase difference between the two solitons isu. The symmet-
ric and antisymmetric initial conditions can be obtained fro
Eq. ~51! by choosingu50 andu5p, respectively.

The initial area of the optical pulse described by Eq.~51!
is

S0~v,u!52p sechS pv

2 D cosS u

2D . ~52!

From Eqs.~50! and ~52! one can see that ifv50, there are
two critical values of the phase differenceu for which

a(0)50. The two critical values areucr
(1)52 arccos(34 ) and

ucr
(2)52 arccos(14) and correspond ton52 andn51, respec-

tively. This implies that atv50, depending on the value o
the phase differenceu, there are two distinct eigenvalue
located on the imaginary axis if 0<u,ucr

(1) , one if ucr
(1),u

,ucr
(2) , and none ifucr

(2),u<p. Consequently, the eigen
value spectra in the first and the third case are topologic
similar to the ones presented in Fig. 1~a! and Fig. 3~a!, re-
spectively. A typical spectrum which corresponds to the s
ond case, that is,ucr

(1),u,ucr
(2) , is presented in Fig. 5 and i

obtained foru52p/3.

FIG. 5. The discrete spectrum determined by the initial con
tion ~51!. The amplitudeh ~dotted line! and the velocityj ~con-
tinuous line! of the generated solitons as a function of the frequen
detuningv. The phase difference isu52p/3.
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VI. CONCLUSIONS

In conclusion, we have described the interaction betw
two overlapping solitons of different frequencies whi
propagate in an ideal monomode optical fiber. We analy
the physical regime in which the frequency detuning is co
parable to the soliton spectral width. It has been shown t
depending on the separation in the initial frequencies,
structure of the generated solitons can be very rich. Thu
is possible to generate one or two solitons with zero velo
ties in the group velocity reference frame or a pair of solito
which propagate with equal and opposite velocities. T
thresholds which separate these different regimes are ca
lated both analytically and numerically. Finally, we wou
like to stress that in order to generate solitons of the t
~32! and~42!, the choice of the initial pulses is not restricte
to sech-like type. Thus, we determined the structure of
ev

A

.
n

.

E

t.
n

d
-
t,
e
it

i-
s
e
u-

e

e

emerging solitons from a superposition of two Gauss
pulses and the results we obtained were qualitatively sim
to those presented here, the only difference consisting in
numerical values of the threshold frequenciesv1,2,3

s ,v1
a .

Therefore, the results we presented are rather general an
restricted to a specific form of the two superimposed puls

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foun
tion for Basic Research and by the Russian Ministry for S
ence and Technology program ‘‘Nanostructures.’’ C.E. a
F.L. thank the Deutsche Forschungsgemeinshaft~INK1! for
support. We gratefully thank M.J. Ablowitz, G. Biondini, J
Cole, J.W. Haus, R.L. Horne, and K. Wagner for many he
ful discussions.
s-

. A

-

k,
tt.
-
n.

s,

N.

D.

d

n.
@1# A. Hasegawa and F. Tappert, Appl. Phys. Lett.23, 142~1973!;
23, 171 ~1973!.

@2# V. E. Zakharov and A. B. Shabat, Zh. E´ksp. Teor. Fiz.61, 118
~1971! @Sov. Phys. JETP34, 62 ~1972!#; 64, 1627~1973! @ 37,
823 ~1973!#.

@3# L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. R
Lett. 45, 1095~1980!.

@4# P. Emplit, J. P. Hamaide, F. Reynaud, G. Froehly, and
Barthelemy, Opt. Commun.62, 374 ~1987!; D. Krökel, N. J.
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